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Last Two Weeks!
• Two “finale” lectures!

• I will make an audacious but speculative argument!
• Optimistic parallel discrete event simulation can be viewed as a new parallel 

programming paradigm for many scalable applications, not just simulation.!
• Put another way: From this point of view all sufficiently large cooperative 

parallel computations can fruitfully be viewed as simulations!

• Will touch on many exascale (and beyond) issues!
• synchronization!
• debugging!
• fault recovery!
• load balancing!
• power management!
• space-time symmetry!
• parallel programming methodology!

• Looking for your feedback and ideas!

2

Remember that none of the ideas in this week’s lecture or last have been implemented and tried out in real applications.  Lectures 14 and 15 are speculative in 
nature and are my personal best guesses of where virtual time technology might be useful.
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Virtual Time for Most 
Large Scale Computations

3
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Simplify some of the complexity by 
using Virtual Time
• Virtual time is a temporal coordinate system that plays a 

logical role in the computation!
• It is an abstraction of real time, much as an address space is an 

abstraction of real space!
• It has many of the same properties of Newtonian time!
• It allows time to be addressable and random access, just as we make 

space addressable.!

• Heretofore the only broad computational paradigm that 
makes explicit use of a temporal coordinate system is 
simulation.!

• But what if we view any computation as taking place in 
the context of both a temporal and spacial address space 
— virtual space-time?!

Virtual time — not just for simulation any more!
4
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Determinism

5
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All virtual time programs are 
deterministic!

• Replace threads, processes, chares, etc. with objects of the kind we 
have described in this course.!

• Replace all synchronization and mechanisms with structures defined 
in terms of virtual time!

• Replace all communication mechanisms with structures defined from 
event messages!

• Require a deterministic virtual time tie-breaking rule !

• Exclude access to real time, real randomness, real node addresses, 
and real memory addresses inside of event methods!

• Require deterministic assignment of virtual time values!

• Then —

6

It is impossible to write a nondeterministic 
virtual time program!

• This is true for both conservative and optimistic implementations.
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Debugging methodology can be 
greatly simplified

• Any nondeterminism observed is immediately known to be a fault or else a bug in 
the underlying runtime system, OS, or hardware. !

• Classic “sequential” reasoning and instrumentation used to narrow down the 
location of a bug works for parallel applications, because the semantics of virtual 
time are sequential.!

• No timing-dependent Heisenbugs are possible at the application level — passive 
instrumentation that affects real time behavior does not affect virtual time behavior!

• Breakpoints can be introduced in the runtime system (without resorting to 
instruction replacement) to pause the global computation at a particular virtual 
time for closer inspection with power tools.!

• Time stepping through various intervals of virtual time is possible and 
reproducible.!

• With optimistic (rollback-oriented) implementation, fast backward time-stepping 
through virtual time can be implemented based on suppression of fossil collection 
(until you run out of RAM).!

• We already discussed low-overhead, non-barrier optimistic checkpointing as well 
earlier in the course

7
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Arbitrary fault detection and recovery
!

• Because of application-level determinism, any discrepancy indicates a failure 
in system layers below!
• transient or permanent HW failure of some kind (including in the comparison)!
• a bug in runtime system or OS!

• Arbitrary single faults affecting the application are detectable by 
duplicate computations!
• Not just memory or communication faults — transient processor faults also!
• Arbitrary single faults are correctable by triplicate computation and voting !

• These techniques only work for arbitrary single faults if the 
application is deterministic!
• With a nondeterministic computations, the fact that states and messages do not disagree 

means nothing.!
• There may not even be corresponding states and messages!

• In addition, with optimistic virtual time, transient faults are also 
correctable by quasi-local local rollback!
• No need to restore global checkpoint!

8

Transient processor faults are not even detectable in today’s architectures — there is no hardware for it today and in general there generally can’t be without 
duplication somewhere.!!
Even if detectable, such faults are not correctable without even more mechanism.!!
But as we will see, transient faults can be detected and corrected without restoring global checkpoints using virtual time.
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Synchronization

9
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Synchronization is about the relative 
timing of events in a computation
• It is about constraints of the timing relationships among 

events!
• It is about the total order of events only,!
• … not their real time speed or performance!
• Recall that with any implementation of virtual time the runtime system is 

concerned only with the ordering properties of virtual time values, not the 
arithmetic properties!

• We can thus re-interpret the definitions of various 
synchronization constraints as referring to virtual time  
instead of real time!

• Examples!
• mutual exclusion!
• database transactions!
• barriers

10

Because virtual time has exactly the properties of real time that synchronization depends upon, we can consider every synchronization primitive and re-interpret its 
definition and/or implementation with virtual times substituted for real time.  A lot of very interesting things happen.!!
The general way to think about virtual time synchronization is this: define a synchronization constraint in terms of real time values.  Then redefine it substituting 
virtual time values.  The results is another synchronization primitive that is nonblocking and optimistic and in many cases can perform better than the real-time 
(conservative) primitive.
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Mutual exclusion

11

11 PDES Course Slides Lecture 15.key - May 28, 2014



Parallel Discrete Event Simulation  -- (c) David Jefferson, 2014

Mutual Exclusion
• Two actions, P and Q, are mutually exclusive if they do not overlap 

in time, i.e. either P completes before Q starts, or vice-versa.!
• Or if they are executed in a semantically equivalent way!

• Usually implemented as a race: The first one to start prevents the 
second one from starting until the first one completes!

• It is nondeterministic which one wins.!

• Generally implemented with busy-waiting, locks, semaphores, etc., 
and proper prelude and postlude code in P and Q.!
• Deadlock is a hazard if not done correctly!

• These implementations apply only to sequential segments of code 
that somehow share access to a lock or semaphore!

• They are not naturally generalizable to the case where P and Q are 
themselves big parallel computations.!

• These implementations preclude any parallelism between P and Q
12

The real time definition of mutual exclusion would go something like this: P and Q are mutually exclusive if the real time interval during which P executes does 
not overlap with the real time interval in which Q executes.!!
Or, equivalently, P and Q are mutually exclusive if one of them finishes executing at a real time moment earlier than the real time moment at which the other one 
starts.
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Mutual Exclusion in Virtual Time
• Instead, interpret the definition of mutual exclusion to mean non-overlapping in 

virtual time rather than in real time!

• Simply allocate an interval of virtual time to P and a non-overlapping one to Q. !

• No locks or semaphores required.  No prelude or postlude code required.!
• Deadlock is impossible!!

• Works even if P and Q are arbitrarily large and complex parallel computations, not 
just sequential fragments!

• P and Q can execute in parallel as long as they do not conflict.  If they do, one the 
one in the later virtual time interval will (partially) roll back.!

• The two may execute in either order or in parallel, but …!
• If there is a conflict, the one allocated the earlier virtual time interval always “wins”!
• This is deterministic mutual exclusion!
• Regardless of actual execution order their committed results will be as if executed in virtual time 

order!

• You cannot write  nondeterministic mutual exclusion in virtual time !
• … unless you assign virtual times by nondeterministic mechanisms, which we have excluded!

• On the other hand, you cannot write deterministic mutual exclusion with locks or 
semaphores!
• … which are inherently nondeterministic

13

The real time virtual time definition of mutual exclusion would go something like this: P and Q are mutually exclusive if the real time virtual time interval during 
which P executes does not overlap with the real time virtual time interval in which Q executes.!!
Or, P and Q are mutually exclusive if one of them finishes executing at a real time virtual time moment earlier than the real time virtual time moment at which the 
other one starts.
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Atomic transactions

14
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Database transactions
• An atomic transaction P is an action that is, in effect, 

mutually exclusive with all other actions in the 
computation!
• i.e. during its execution no other code can modify or observe its 

intermediate states!

• Database transactions generally have to be atomic!
• Order of transaction execution generally nondeterministic!
• Optimistic, multiversion concurrency control mechanisms go part way 

toward optimistic virtual time synchronization but …!
• use transaction abort rather than full rollback!
• are still nondeterministic in the serialization order of transaction execution!

• None of the concurrency control mechanisms are readily generalizable to 
arbitrary internally parallel or distributed atomic actions!

• Generalization to arbitrary nested transactions is complex

15
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Virtual Time Atomic Actions
• In Virtual Time all single events are already primitive 

atomic actions !

• An arbitrary complex parallel or distributed action can 
be made atomic by allocating it a window of virtual time 
that does not overlap that used by any other part of the 
computation!
• All transactions must be allocated short segments of virtual time unique 

to themselves — that’s all there is to it!
• Nested transactions are easily accommodated by allocating nested 

regions of virtual time to them.!

• Even distributed transactions that access the same data 
objects can proceed in parallel!
• If there is a conflict, the one with the lower region of virtual time will 

always win!
• Transactions commit in virtual time order !
• Apparent order of transaction execution fully deterministic

16
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Barrier 
Synchronization

17
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Barrier Synchronization

• If P and Q are parallel programs, then let us write !
! ! { P ; Q }!
where ; is a barrier synchronization operator.!

• Semantically, barrier synchronization is the composition of 
(partial) functions.  If FP and FQ are (partial) functions over system 
states corresponding to programs P and Q, then !
! ! ! ! ! F{P ; Q} = FQ ◦ FP!

• Operationally, barrier synchronization means!
• Execute P, starting from an initial input state!
• Execute Q, where the output state of P is the input state of Q!
• The output state of the whole computation is the output state of Q!
• Information is only transmitted from P to Q, but never the reverse 

direction

18
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Conservative Implementation of 
Barrier Synchronization

• There must be a way of indicating which processes are 
involved in a particular barrier instance. In MPI that is a 
communicator.!

• In each process we need a specific call to a barrier 
function, e.g. MPI_barrier(communicator), at the exact 
point in the logic where the barrier occurs!

• The conservative implementation of { P ; Q } relies on 
process blocking!
Start all parallel parts of P; if any part of P fails, abort!
Each process, when it executes the barrier() operator, blocks!
    until all parallel components of P to finish in real !
    time(including any threads or processes created by P)!
Start all parts of Q

19

The real time definition of barrier synchronization is this: there is a barrier between parallel activities P and Q if P finishes at a real time moment earlier than the 
real time moment when Q starts.
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Barrier Synchronization

• Blocking until all parts of P to finish in real time is not 
formally required!

• All that is required is that it appear that way, though it is 
not obvious how else to do it!

• Parts of Q can be started before parts of P finish, or even P 
and Q can be done out of order, as long as the formal 
definition of barrier synchronization is satisfied.!

• Compilers routinely reorder statements across  ; - 
boundaries all the time, as long as it makes no semantic 
difference.

20
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Optimistic Virtual Time Synchronization
• Fundamental observation:!

With virtual time there is always a perfect global 
barrier between any two distinct virtual times!!

• To create implement a barrier as in { P ; Q }, just 
make sure that all events in P take place at lower virtual 
times than any of those in Q!!

• Because the barrier is global, no construct like a 
communicator is required.!

• Because we are using virtual time no specific call to any 
kind of barrier() programming primitive is required.  !
• We have our temporal coordinate system to use instead of points in the 

sequential code.!
• We can name points in virtual time, and we can calculate them!

21

The real time virtual time definition of barrier synchronization is this: there is a barrier between parallel activities P and Q if P finishes at real time virtual time 
moment earlier than the virtual time momentwhen Q starts.
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Comparison between conservative and 
optimistic barrier synchronization

• Blank space: 
blocked 
process!

• Light tan: 
event 
execution that 
will be rolled 
back!

• Dark brown: 
rollback 
overhead 
(assumed 50% 
or event time)

22

This slide shows the diagrams in the previous two slides side-by side.  You can see that the conservative barrier execution has a lot of time when the processors are 
idle, waiting at the barrier for the last process to reach it before starting the next round of computation.  But the optimistic barrier synchronization has no idleness.  
It is always executing (at least until the last round is finished).  The execution is in most cases speculative and ends up getting rolled back.  But even so, the five 
rounds of the computation finish slightly sooner that with the conservative synchronization. !!
A key parameter for the repeated barrier computation is the ratio of the worst case execution time of any process in a round to the average case execution time 
among the processes in a round.  If that ratio is high, then conservative execution performs very poorly and optimistic execution often wins.  If that ratio is low, 
however, then the overhead of optimistic synchronization often causes it to perform worse than conservative synchronization.
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Fault Recovery

23
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Detecting and correcting transient 
computational faults

• Today we have various mechanisms for detecting and 
correcting memory errors and data transmission errors!
• Generally variations on parity, checksums, and ECCs.!

• But we have no general redundancy mechanisms in place 
for even detecting outright computational errors!
• The only possibility is duplication of the computation and comparison!
• But that only works if the computation is deterministic!

• And even if we detect them, we currently have no way of 
correcting them except by global restoration of a global 
checkpoint

24
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Reverse computation cannot reliably 
restore a previous state in the 
presence of a fault

• What is supposed to happen!

<S1> → E+() → <S2> → E-() → <S1>!

• What happens if there is a fault in forward computation!

<S1> → E+() → <S2> → E-() → <S1>!

• What happens if there is a fault in reverse computation!

<S1> → E+() → <S2> → E-() → <S1>!

• The story is no better if the fault occurs in the runtime 
system or OS

25

Notice that if we want to use rollback to recover from faults, we cannot use reverse computation to accomplish it.  With reverse computation, if we start in state S1 

and execute E+() correctly then we get to S2, and if we then execute E-() correctly we get back to S1.!!
But if a fault happens during execution of E+(), and we do not get to S2, but instead to faulty state, then executing E-() correctly does not necessarily get us 
back to S1 as it is supposed to, but likely to another faulty state.!!
A similar problem arises if the fault occurs not during E+(), but during E-(). Again, starting from correct state S2, we do not get back to correct state S1 as we 
are supposed to, but to a faulty state.
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Can we use rollback to recover from 
faults?
• We would probably not consider it except that we are have a  

rollback mechanism in place for synchronization anyway!!

• But with virtual time transient computational faults are 
correctable without global restoration of a global checkpoint!

• However!
• We must duplicate the entire computation just to detect computational errors!
• We must use state saving, not reverse computation, for rollback!
• We must check for errors at commit time by comparing states and messages in the 

duplicate computations!

• Corrections can be done !
• semi-locally!
• asynchronously!
• in parallel with the rest of the computation!
• no (conservative) barrier required

26
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Run entire computations in duplicate
• Obviously requires twice the RAM right off the top, and 

twice the cores if there is to be no speed sacrifice.

27

Old 
EGVT

New 
EGVT

Because this is a deterministic virtual time computation, both of the space-time graphs will look identical.  !!
The lower green line is the virtual time at which the last full state saves occurred, so we can roll back to those states without doing reverse computation. The states 
and messages crossing that line were validated by comparing them to their twins in the other computation.!!
The upper green line represents the newly calculated EGVT.  At this point we are about to commit to this new EGVT and discard all older state and message 
information.  But first, as part of commitment, we have to make sure it is correct, i.e. that the new states and messages we are going to save and from which we 
cannot roll back, have not been damaged by a fault of system bug.!!
(Slight additional complications in the algorithms on these next slides arise if objects are created or destroyed, but we will ignore them.)
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Compare final states and messages to the 
corresponding ones in the twin computation 

28

Old 
EGVT

New 
EGVT

The blue segments represent the states (vertical) and messages (horizontal) that will be saved after commitment.  All else will be discarded.  !!
The first step is to compare these states and messages from one computation to those of the other twin computation.  If they are all identical, then the commitment 
can continue, and all but the blue states and messages can be discarded.
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Identify states and messages that disagree 
between the “twin” computations

29

Old 
EGVT

New 
EGVT

However we may find discrepancies in some of the states or messages that we compare.  In this case the red lines represent states that disagree with the 
corresponding ones in the other duplicated computation.  !!
We don’t know at this point which ones are correct and which are wrong — indeed in principle they could all be wrong, though that should be extraordinarily 
unlikely. We also don’t know if these discrepancies represent the results of multiple faults, or just the spreading pollution of one original fault. If they are multiple 
independent original faults, some of the faults could have occurred in one computation and others could be in the twin.  !!
Regardless, the following procedure is unchanged.
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If possible, trace backward in the 
computation to find the original faulty event

30

Old 
EGVT

New 
EGVT

The original faulty event(s) have inputs that agree in the twin computations, but outputs that do not. If the rollback mechanism uses full state saves for every event 
or full saved state deltas of some kind (e.g. dirty pages), then we can trace backward in both computations, comparing comparable states and messages between the 
two, to discover the original faulty event. The original faulty event would be an event in which all of the inputs to the event (states and messages) agree between the 
two computations, but the outputs differ.  Having found that event, we know that it either executed wrong in one computation or in the other (or extremely rarely, 
both), but we don’t know which. The red arcs are where the corresponding states or messages in the twin computations disagree.  The starred event is the one that 
had the original failure in one or the other computation (but we don’t know which one).!!
If there is a way to reconstruct this state reliably in both computations (e.g. because we are doing full up front state saving (snapshotting) between every two events) 
then we could just restore those states to the object in question in both computations and let them execute forward again from there using lazy cancellation.  Both 
computations will re-compute the red tree of incorrect or potentially incorrect messages and states, and if the final states and messages they compute at EGVT agree 
this time, then the problem has been perfectly corrected.  If not, then there is either a bug in the runtime system/OS, or there is a permanent fault (or a second 
transient fault — presumably so rare that it is negligible), and we should then abort.
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Trace backward all the way to the last validated 
saved states, roll back, and recompute forward 

31

Old 
EGVT

New 
EGVT

Trace back from the states and messages that disagree between the two computations at the time of the New EGVT back to the last validated snapshot to identify all 
states and messages that have causal paths to the known good states and messages at Old EGVT. In this diagram all of the orange and red events, states, and 
messages are suspect, and the fault is somewhere included among them. That is the portion of the computation that has to be re-done.  Even if the fault was in the 
OS or runtime system, as long as it was transient, redoing the red computation will correct it.  (But it will not necessarily correct the effects of bugs in the OS or 
runtime system.)!!
To correct the faults we roll back all of the objects in both computations that lead to suspect events.  In this case it is the leftmost 8 objects in both computations that 
must roll back.  When we roll back the 8 leftmost objects, we proceed to re-execute forward using lazy cancellation.  That prevents us from resending messages that 
are the same as were generated the last time the event was executed before the rollback, and from re-doing more of the computation than is necessary to assure that 
the fault is corrected.!!
However, since we are not doing full state saves after every event, we have to trace backward from the bad outputs of the computation all the way back to the 
known good inputs.  Any message, state, or event on a path from the known good inputs to one of the bad outputs is suspicious.  In this diagram that includes both 
the red and orange arcs and nodes.!
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Don’t use aggressive cancellation in the 
rollback

32

Old 
EGVT

New 
EGVT

We must roll back all processes that are suspicious to a known good state, and start re-executing forward.  As we re-execute forward we can use aggressive 
cancellation, lazy cancellation, or some other variation.  Aggressive cancellation, however, is a poor choice because it leads to cancellation of many more messages 
than necessary, and hence much more re-computation than necessary.  In this diagram the brown arcs and computation are not suspicious, but aggressive 
cancellation would cancel all of those messages anyway, and then the forward execution would regenerate and re-send them all. It would work, but is inefficient.!
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Use Lazy cancellation instead!

33

Old 
EGVT

New 
EGVT

When we roll back the leftmost 8 objects (the suspicious ones) to the known good states and message queues and then re-execute forward with lazy cancellation, we 
end up canceling and re-executing a lot less computation than with aggressive cancellation. In this diagram the red and green arcs are those that have to be re-
generated and re-transmitted. The red arcs were actually incorrect in at least one of the twin computations and of course they end up being recalculated. The 
vertical green arcs represent events and states that get re-executed just because we don't know that they are correct until we re-execute them all the way forward to 
final states at time New EGVT. But with lazy cancellation the events on the green paths recalculate the messages sent from those events, and because the outgoing 
messages from those events were correct the first time and are then regenerated the same as the first time the event was executed, there is no need to cancel them or 
resend them those messages -- that is the way lazy cancellation works. Thus, there are no green message arcs in this diagram, just green state arcs. With a little more 
logic, some of the green states would not have to be re-calculated either, because once we recalculate and event all of whose outgoing messages are already correct, 
if that happens in an object whose final state is known correct, then all of the intermediate states can be presumed to be so also.
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Dynamic Configuration 
Management

34
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Dynamic Configuration Management   
— DCM

• Dynamic load balancing —> dynamic configuration 
management!
• includes dynamic processor (core) load balancing, balancing 

communication channel loads, and reducing communication latencies !
• The general view is to dynamically reconfigure the computation so that 

progress on the critical path is fastest!

• In an SPMD application the natural technique for managing 
load is moving element / region boundaries, and splitting of 
joining of elements, and migrating data.!

• But in an MPMD application like PDES, that does not work

35
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DCM by object migration

• MPMD applications must be dynamically managed by migrating 
processes / objects from one platform node to another!

• Overdecompose the application into small, concurrent, migratable 
units!

• Instrument to estimate what parts of the computation and 
communication are on the critical path!

• Migrate objects in such a way to speed execution of the critical path!

• Adjust message routing maps dynamically so that messages in transit 
and subsequent messages are correctly routed to the new location of 
the migrated object

36
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Ideal method of DCM
• Imagine an oracle that can instantly compute metrics for the future of 

the computation, with all arcs and nodes labels with real execution 
and message transmission times!

• Have the oracle calculate the lengths of all future paths from the 
current states of all objects to the end of the computation.!

• Schedule all event execution so that if there are n cores available, 
then always the lowest virtual time events on the n longest (critical) 
paths are being executed.!
• every microsecond that we are not making progress on the critical path(s) is a microsecond of 

delay in the final completion time.!

• Propose object migrations that make longest near-term critical paths 
shorter:!
• If computation is the bottleneck make sure that long paths do not compete for cores!
• If some processors are faster than others, migrate critical objects to the faster ones!
• If communication bandwidth is the bottleneck, make sure that long paths do not compete for 

communication links!
• If communication latency is the bottleneck, make sure that objects that communicate 

bidirectionally on the critical path are close to one another, preferably on the same node.

37
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Two levels of DCM
• Application-independent!

• Generic heuristic methods that apply to all applications!
• Transparent to the application, implemented in the runtime system!
• Portable to all platforms, implemented with similar code but different 

performance parameters!
• Modifications to application code, or federation with other codes require 

no change!
• Analogy: Page retrieval and replacement algorithms for memory 

management!

• Application-specific!
• Methods specific to a particular application or code!
• Application provides parameters, commands, or advice to the runtime 

system!
• Modifications to application code, or federation with other codes will 

generally require changes in DCM!
• May get better performance than application-independent methods, but at 

the cost of application complexity and portability
38

Application-independent methods of DCM make one fundamental assumption: that the recent past dynamic behavior of an application is best predictor of the near 
future behavior. When that assumption is not true, as when the computation goes through frequent phase changes, then it is necessary to fall back on application-
specific methods if they are available. !!
The general question for which we need new research is: To what extent can we make do with application-independent methods alone, so that they can be packaged 
in the runtime system and application programmers don’t have to think about DCM?  Demand paging has been an extraordinarily successful method of managing 
virtual memory, to the point tat there are very few circumstance in which an application programmer bothers to think about virtual memory management. The 
classic cases when it is necessary are when deciding how to walk the elements of a two dimensional array, and when writing memory management libraries (e.g. for 
malloc() and free()).  Can we design application independent DCM algorithms that are as successful as demand paging algorithms?
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Virtual Time is useful for Application 
Independent DCM

• Dynamic load balancing has traditionally been driven by 
estimates of the “load” on the system processors and attempting 
to dynamically “balance” it.!

• But that is not theoretically the correct approach, even for 
compute-bound executions, except in special cases!

• DCM should ideally be driven by estimates of the future critical 
path.  !
• Computation and communication on the future critical path should get 

more resources or lower latency!
• … at the expense of those off the critical path!

• Current measure of processor or core loads tells you nothing 
about the future critical path!

• Virtual time does!

39

39 PDES Course Slides Lecture 15.key - May 28, 2014



Parallel Discrete Event Simulation  -- (c) David Jefferson, 2014

Virtual time is an estimator of 
where the critical paths are

• At any given moment, virtual time is an estimator of what 
is on the critical path!
• lowest virtual times represents bottleneck objects — likely to be 

executing on the critical path!

• high (or ∞) virtual times are not a bottleneck, and likely to be doing 
speculative computation — unlikely to be advancing a critical path!

• Rank order in virtual time indicates where more 
resources are needed, and where they should be taken 
from!

• “Velocity” in virtual time as another useful statistic!
• Ratio of committed progress in virtual time Δv to committed progress in 

real time Δt!
!! ! ! ! ! ! Δv/Δt

40
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GVT

Objects near GVT hold back progress 
and need more resources

Over-	


loaded

Over-	


loaded

Under-	


loaded

Under-	


loaded

Under-	


loaded

The red vertical bars represent how far in virtual time the objects in the simulation have progressed as of the time a new value of GVT has been calculated.  Notice 
that GVT is defined by the lowest virtual time to which any object has progressed, whereas most of the objects are ahead of GVT, and some far ahead. (This 
description is not  strictly true, of course, since messages in transit can also determine GVT and we are not considering that here.  Also not considered is that not all 
of the objects in a computation will be polled for the contribution to GVT or informed of the new GVT value at exactly the same time, and so this diagram, which 
purports to be an instantaneous snapshot of the progress of all of the objects, really cannot be.  But I am ignoring those points.)!!
The background regions above the groups of bars (representing groups of four objects each located in the same platform node) are colored pink, yellow or green 
according to whether the farthest behind object on that node is far behind in virtual time, among the midrange, or far ahead in virtual time.  Those platform nodes 
that are far ahead (green) can be considered to be underloaded in comparison with the others.  Those that are far back (pink) can be considered to be overloaded.  
This suggests that a reasonable strategy for ordinary load balancing would be to migrate load from pink to green nodes.
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Objects sorted in rank order 
of virtual time

42

GVT

Overloaded Underloaded

During GVT calculation, calculate (or estimate) the 
virtual time rank of every object in the computation. Use 
that in a ranking for load balancing purposes.

In this slide we have taken the data (red bars) from the previous slide and arrayed it in sorted order !!
In order to apply the strategy outlined on the previous slide, it is necessary for each node to be informed, at the time a new EGVT value is promulgated, of its rank 
in virtual time compared to all other nodes.  That way a node knows whether it is overloaded or underloaded with respect to other node.  The nodes armed with 
that information may collectively apply algorithms and heuristics to decide which objects are to be migrated where.  This rank information does not fully determine 
the load balancing algorithm, but it definitely helps inform it.
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Energy management as a potential tool 
for “load balancing"

• Assumptions!
• We want to power as little of the hardware circuitry as possible at all 

times!
• The runtime system can reduce or increase power usage on a node-by-

node basis by reducing or increasing the clock frequencies on the entire 
node!

• Changes in node-level power allocation are low-overhead!

• Approach!
• Send maximum power to nodes that are behind in virtual time, causing 

them to execute at max speed!
• Reduce power to nodes that are ahead in virtual time, causing them to 

slow down (relatively)!
• Energy management for short term adjustments!
• Migration for longer-term adjustments

43
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Migration to reduce latency on 
critical path?  How?

44

Migration 
unnecessary

Migration may be 
helpful

Migration may be 
helpful, but hard to 
detect

DCM also should be interpreted is including the migration of objects for purposes of getting those the communicate frequently to be located near one another in the architecture of the 
machine so as to reduce latency, and if possible to get the located on the same node so that communication can be through shared memory.!!
However, knowing when migration to reduce is appropriate or not is very tricky. First, of course, it is only worth reducing communication latency if that communication is on a critical path of 
the future computation. But even if that is perfectly known, it is still not obvious how to instrument to determine when to migrate and when not.!!
For example, in the leftmost diagram the communication pattern is that one object is sending frequent messages to the other.  But there is no return traffic — the communication is entirely 
one way.  This is a case in which the two objects are essentially stages in a pipeline, and there is very little to be gained in migrating them closer together.  If a million messages were sent, 
and they were moved closer together so that the communication latency were, say 1 usec instead of 10 used (a latency reduction of 90%) the execution time for the entire computation 
would only be shortened by 9 usec, not 9 million usec.!!
On the other hand, in the middle diagram where there is traffic in both directions it is possible for every message latency to be on the critical path of the entire computation.  In that case 
reducing latency from 10 used to 1 used would save 9 used for each message in the critical path.  If there are a million messages exchanged, and all are on the critical path (because the 
application is communication bound) then that saves 9 million usec in of total runtime end to end.!!
In the third diagram messages are circulating among three objects.  This is like the middle case in that if all of the messages are on the critical path, then it will definitely pay to migrate the 
three of them closer together, or even just two of them.  The problem is that it is not clear how to instrument in order to detect this pattern, since no one node or pair of nodes has enough 
information to recognize it.
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New Research Needed in DCM
• Better estimates of critical path in compute-bound 

computations!

• Estimates of critical path in latency-bound computations!

• Even having a good estimate of the critical path, how do 
we suggest particular migrations?!
• What objects should be moved from where to where?!

• How do we consider the costs of DCM in a cost-benefit 
analysis?!
• The cost of the instrumentation, and the migration decisions!
• The cost of migration itself!

• Unified theory of DCM!

• Unification of DCM with energy management

45
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Space-Time Symmetry

46
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Symmetries in Time Warp 

• Attention to symmetry allows for !
• simple explanations!
• clean APIs!
• clean implementations!
• deeper understanding!
• unexpected variations and generalizations!

• The semantics of optimistic methods have been 
carefully designed to exhibit many symmetries!
• input message / output message symmetry!
• forward / reverse message transmission!
• event message / state symmetry!
• message / antimessage symmetry!
• forward / backward in time symmetry

47

The Time Warp optimistic method for implementing virtual time was deliberately designed with numerous symmetries in mind.  Whenever there was a “near 
symmetry”, we asked “what happens if you make the symmetry perfect, and in every case the system was improved and new insight gained.
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Extended analogy between virtual memory 
(demand paging) and virtual time (time warp)

48

virtual memory virtual time
virtual address virtual time

page event

page out of memory event in the past

page in memory event in the present or future

page fault (caused by addressing a 
page out of memory)

rollback (“time fault” caused by 
addressing an event in the past)

pure demand paging (retrieve 
page only when page out of 
memory is  referenced)

pure demand rollback (roll back only 
when a virtual time in the past is 
referenced)

thrashing: too many page faults thrashing: too many rollbacks

cure: allocate more real memory 
to hold pages

cure: allocate more real time for 
events (i.e. slow down!)

The term “virtual time” was chosen partly because the term “simulation time” suggested that it was only for simulations, whereas we intended wider applicability, 
and partly because of this extended analogy to virtual memory, which we consciously used to clarify the ideas of virtual time.!
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Examples of unexpected innovations 
inspired by symmetry

• Message sendback — symmetric to process rollback!

• “Jump forward” rollback optimization — symmetric to 
lazy cancellation!

• Antistates and anti-objects — inspired by antimessages

49

There were several unexpected innovations in the Time Warp algorithm that were directly inspired by symmetry considerations.!!
Message sendback, used for flow control and memory management in general, was directly inspired by object rollback.  By asking the question “Why can we roll 
back computation but not communication?” the answer turned out to be “We can!”, and it was a very important discovery.!!
Lazy cancellation as discovered early.  But it was a long time before the symmetry between states and messages became clear enough that we could ask the question 
“Is there a state analog to lazy cancellation for messages?”.  The answer turned out to be yes, and it was dubbed the “jump forward optimization”.  We have not 
talked about that in this course, but it is present in the literature.!!
Anti-states and anti-objects were directly inspired by antimessages and the question “Because of the strong symmetry between states and messages, since there are 
two kinds of messages, + and -, why aren’t there also two kinds of states?”.  The answer was that of course you could define that, and when you do out pops the 
notion of anti-objects.  If you run two objects, P and anti-P in the same computation, the results is that anti-P exactly cancels all of the side effects if P, and it does so 
asynchronously and concurrently.
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Object / anti-object Symmetry Group
• Define NOOP:!

• Object with empty state that does nothing when it receives an event message!

• Let  ||  be a binary operation on objects that means to execute 
them at the same virtual location.!

• Two objects at the same virtual location both receive and process the same incoming messages 
using their respective separate states.!

• If P is an object, define -P as its anti-object. !
• -P is in the same virtual location as P and starts in the state that is the antistate of the one P 

starts in (i.e. same state but the opposite “sign”).  !

• Whenever P sends an event message M, -P computes and sends the antimessage -M!
• When P saves a state S, -P saves the antistate -S, and erases it!

• Then || over the space of all objects forms an Abelian group 
operation, with NOOP as its identity!

P || (Q || R) == (P || Q) || R             associativity!
P || Q        ==  Q || P                    commutativity !
P || NOOP     ==  NOOP || P     =  P      identity!
P || -P       ==  NOOP                      inverse

50

In this slide P, Q, and R are objects.  P ||Q  means to execute P and Q in parallel and at the same virtual location!  What does it mean to execute two objects at the same virtual location?  It means that whenever any event 
message is sent to P is also sent to Q at the same time.  Put another way, at the point in virtual space-time where the event occurs, there are two states (one from each object) and one event message. If that sound bizarre, just 
remember that we have already had to deal in the early part of this course with the fact that we sometimes have two event messages arriving at the same time at the same location. We have called this tie, and we needed 
a tie-breaking rule to determine what to do in that case.  But since messages and states are supposed to be symmetric to one another (and we want them to be) then we need to be able to consider and handle the events in 
which there are two states and one event message (and more generally, m states and n messages).  That is what we are doing here.  And what we mean by executing an event with two states and one event message (our 
state-tie-breaking rule) is that both objects separately process the event message in the context of their separate states, each making its own state changes and each sending out new event messages as calculated. But, 
since they both are at the same virtual location, they both send event messages with the same sender and send time.  Note that the “sender” is not really the “name” of the object, since “P” and “Q” have different 
“names”; rather the sender of a message is more properly the “virtual location” of the sending object, and side P and Q have the same virtual location, the messages they send have the same sender field.  (This is 
important because when P and -P are at the same virtual location, we want the messages they send to be true anti messages of one another, which they would not be if they had different senders.)!!
We define an antistate to be the same thing as a (positive) state except that when it processes a (positive) event message, any event messages it sends as a result are negative, not positive, and the copies of outgoing 
messages that it saves in its output queue are positive, not negative.!!
The antiobject of object P, denoted as -P, is identical to P in that it has the same event methods and the same initial state, except its initial (and all subsequent states) are negative instead of (the normal) positive states.!!
These definitions lead to the consideration that the space of all objects and anti-objects forms an Abelian group with respect to parallel composition at the same virtual location.  (Strictly speaking the elements of the group are 
not the objects, but object equivalence classes — two distinct objects that generate the same sequences of states and event messages when driven by the same sequence of incoming event messages are equivalent.)!!
(This exposition can be continued to consider state - antistate annihilation, symmetric to message-antimessage annihilation, but the margin of this slide is to small to develop this subject.)!!
What is the point of objects and anti-objects.  Well I am not sure what the practical application of this would be, but I think it is pretty neat that in the virtual space-time formalism you can actually exactly nullify all of the 
side effects, direct and indirect, of literally any object, just by launching its anti-object at the same virtual location.  And the nullification takes place totally asynchronously!!
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Anti-objects

• Objects P and -P (anti-P) 
start in states S and -S 
(anti-S)!

• P and -P receive exactly 
the same inputs!

• However, -P sends 
antimessages to the same 
places P sends positive 
messages!

• All of P’s side effects on 
other objects are exactly 
canceled, as if P did not 
exist.

51

Virtual	


Time

Consider this set of objects interacting as shown. Virtual time goes upward.
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Anti-objects

• Objects P and -P (anti-P) 
start in states S and -S 
(anti-S)!

• P and -P receive exactly 
the same inputs!

• However, -P sends 
antimessages to the same 
places P sends positive 
messages!

• All of P’s side effects on 
other objects are exactly 
canceled, as if P did not 
exist.

52

Same object interaction diagram — just stretched out in one place.
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Anti-objects

• Objects P and -P (anti-P) 
start in states S and -S 
(anti-S)!

• P and -P receive exactly 
the same inputs!

• However, -P sends 
antimessages to the same 
places P sends positive 
messages!

• All of P’s side effects on 
other objects are exactly 
canceled, as if P did not 
exist.

53
P -P

Call the 4th object P.  We have added -P in red next to it.  -P gets all the same input messages as P, but instead of sending positive event messages it sends negative 
ones.
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Anti-objects

• Objects P and -P (anti-P) 
start in states S and -S 
(anti-S)!

• P and -P receive exactly 
the same inputs!

• However, -P sends 
antimessages to the same 
places P sends positive 
messages!

• All of P’s side effects on 
other objects are exactly 
canceled, as if P did not 
exist.

54
P -P

In this diagram we have removed all of the messages output by both P and -P because of course they cancel one another and thus have a net null effect.  We are still 
showing the messages inout to P and -P because nothing prevents other processes from sending messages to them.  We should note, however, that P and -P will not 
get the same messages as P would alone, of course, because some of the messages sent to P (and duplicated to -P) are affected by or prompted by the messages 
output from P (when not cancelled by -P).
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Anti-objects

• Objects P and -P (anti-P) 
start in states S and -S 
(anti-S)!

• P and -P receive exactly 
the same inputs!

• However, -P sends 
antimessages to the same 
places P sends positive 
messages!

• All of P’s side effects on 
other objects are exactly 
canceled, as if P did not 
exist.

55

Despite all of the messages sent to P and -P, they produce no output event messages that get committed, so they act effectively as a kind of event message sink.  
Since they have no effect on the computation, it is as if they are not there at all.
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Anti-objects

• Objects P and -P (anti-P) 
start in states S and -S 
(anti-S)!

• P and -P receive exactly 
the same inputs!

• However, -P sends 
antimessages to the same 
places P sends positive 
messages!

• All of P’s side effects on 
other objects are exactly 
canceled, as if P did not 
exist.
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This is the same slide as the previous one, but with the “gap” closed up.
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Virtual SpaceTime

57
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Dualities in space and time?

58

Spatial notions Temporal notions

array fixed length time series

SPMD parallelism time-stepped, for-loop

struct sequential composition

allocation / allocator scheduling / scheduler

pointer / address virtual time value

memory location broadcast (instantaneous in virtual time)

atomic action encapsulated data

Among the symmetries considered is virtual space-virtual time symmetry.  But that is not a perfect symmetry, since space and time are not generally 
interchangeable with one another — there is still a directionality and connection to causality in time that space does not have.  Still, there is at least a partial duality 
between them, and some spatial programming notions have natural duals in time.  This is the beginning of the idea that virtual space-time may be the semantic 
foundation of a new parallel programming paradigm.
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Simple Virtual SpaceTime computations

59

SPMD computation 
Spatial array

Time-stepped computation 
Temporal array

Time-stepped SPMD computation 
2-D spacetime array

One way to look at parallel computation is as a process unfolding in virtual space-time.  We can view an SPMD computation, for example, as an array.  It is not an 
array of data elements, however, but an array of communicating computations.  Thinking of it as an array is appropriate because the elements are indexed by 
integers (rank, in MPI), because that the number of elements is generally constant (as with data arrays), and because all of the elements are of the same type (i.e. 
share the same code), as with data arrays.!!
If we “rotate” an SPMD computation 90 degrees in virtual space-time, and struggle reinterpret what was broadcast communication is now memory (of the past, but 
also of the future) and what was memory is now instantaneous broadcast, then we can see that the space-time dual of an array is a time series; and if the objects in 
the time series are computations instead of just date, then a temporal array is a time stepped computation, i.e. a big for-loop (with a parallel body).!!
And a time-stepped SPMD computation can be viewed as a two-dimensional array, one dimension of virtual space and one of virtual time.
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General Virtual SpaceTime computation?

60

Virtual Space
V

ir
tu

al
 T

im
e

Can we imagine a new computational paradigm based on virtual space-time?  In this diagram we see a computation composed of many smaller ones composed in 
space (horizontal), and composed in time (vertical).  Some of the component computations arrays, either temporal or spacial.!!
And some events (points in spacetime) may invoke whole new space-time computations that begin and complete during the course of that one event.  The three 
small brown space-time diagrams in the upper right represent that.  In effect those are subcomputations, making this in effect a multiscale computation.!!
In this illustration, some of the virtual space-time is not filled with any computation.  That does not necessarily mean that resources are wasted, however.  Just as 
using widely separated parts of virtual memory address space without using the address space in between does not result in any wasted resources, the same is true 
of virtual time.
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Event-driven Methods for	


Continuous Simulation

61
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Connection between continuous and 
discrete simulation

62

Simulations

Continuous Discrete

Time-stepped Event-driven

Sequential Parallel Sequential Parallel

Conservative Optimistic

discretization ???

Discretization of a continuous model is the transformation from equational form into a discrete model.  Virtually always this is a time-stepped model.  !!
Grand challenge: Develop techniques for transforming continuous models into discrete event models.  No one knows how to do that in general, although there are 
hints coming.  Would help solve the general problem of multiscale simulation, in time at least.
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Event-driven methods for 
continuous simulation?

• Can we discretize continuous models into event driven 
form instead of time-stepped?!

• Event-driven continuous simulation!
• Should work well when there are very high derivatives and/or chaotic 

behavior that “looks like” unexpected discontinuities!
• Could it improve upon AMR?!

• Grand Challenge: Unify continuous and discrete event 
simulation!
• DEVS formalism?

63
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Time stepped vs. event-driven continuous 
simulation

64

Adaptive Mesh	


Refinement

hypothetical	


event-driven algorithm

spacespace

tim
e

repartitioning,	


load balancing

synchronization,	


interpolation
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Future Basic Research in Parallel 
Discrete Event Simulation and 

Scalable Computation	



65
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Research Issues

• Performance!
• dynamic configuration management theory!
• low latency migration and message forwarding mechanisms!
• dynamic energy management!
• mixed conservative / optimistic methods!
• hardware support for virtual time and rollback!

• Reverse computation!
• multiple programming languages!
• more sophisticated methods!
• languages designed with reversal in mind

66
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Research Issues
• Software engineering technology and tools for model 

construction!
• coupling of simulations!

• spatial coupling (one-way and two-way boundary relationships)!
• temporal coupling (one simulation creates initial conditions for (part of)p 
other)!

• multiscale systems!
• objects as simulations!
• events as simulations!

• virtual machines in simulations !
• discrete methods for continuous problems!

• discretization of ODEs and PDEs directly into event-driven form!
• mixed discrete and continuous simulation!
• coupling of continuous and discrete event simulations!

• unification of rollback methods for synchronization and for backtracking!

• Virtual Time for Simulation and Big Data!
• file systems!
• databases
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End

68
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